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Dielectric Formulation of
Test Particle Energy Loss in a Plasma

M. B. Silevitch' and K. I. Golden'
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Using @ perturbation-theorctic method which starts from g microscopic
Newtonian cquation ol motion for the trajectory of a test particle moving
i a magnetic ticld-free plasma, the polarization and statistical contributions
to the test charge encrgy loss are formufated entirely in terms of linear and
quadratic diclectric functions.

KEY WORDS: Encrgy loss; power loss; test particle; nonlinear correction;
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1. INTRODUCTION

There are two principal mechanisms which scatter a test particle in a plasma.
The first mechanism relates to the polarization of the medium and the second
to its statistical fluctuations.

Concerning polarization. when the test charge enters the plasma a
sereening cloud forms about the test charge. exerting a net drag force on it
The interactions are brought about both by the collective (¢ L) behavior
of the plasma particles and by manv-body test-charge ficld-particle inter-
actions (r - 1,). Kronig aund Koringa, Kramers, and Neufeld and Ritchie™
first analyzed the extent of this polarization by considering the plasma to be
a continuous polarizable fluid; the presence of the test charge then brings
about an average electric ficld response which, in turn, decelerates the test
charge. Chandrasckhar and others® also considered the polarization aspect
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of scattering using lest-charge-plasma-particle binary collision models.
However, the long-range charadter of plasma interactions renders binary
collision models less suitable than the self-consistent formulations of the
srevious authors cited. @

Concerning the second principal scattering mechanism, the test particie
i~ heated up by the thermal fluctuations of the plasma particles. Gasiorowicz
~ral % were uble to take account of statistical effects in a Fokker-Planck
swoddel which viewed the plasma system as a source of random microforces

ting on the test charge. The most systematic treatment, however, which
<ivis from a microscopic Newtonian equation of motion for the test charge
o a classical plasma. was presented by Kalman and Ron.® Their pertur-
ration-theoretic study, which features the coupling strength e? (which, in
Simensioniess, form is the ratio of the potential energy to thermal energy) as
i smallness parameter, yiclds the test charge energy loss expressions for
foo pure polarization and pure statistical effects (these occur to lowest
ot ey and for the mixed statistical-polarization effect (occurs to et Jowest
arder). Kalman® later reformulated the O(e?) energy loss contributions in
torms of the linear wave-vector- and frequency-dependent dielectric function
ctong the lines of the fast electron energy loss calculation discussed in the
caantum liguid studies of Pines and Nozieres®™) by making use of the
statistical mechanical fluctuation-dissipation theorem.” This elegant des-
~apiton of energy loss not only provides a deeper insight into the structure
# the Fokker-Planck coefficients, but enables one to determine the encrgy
< in terms of the Flasor expression for the linear polarizability. Indeed,
s could caleulate the Tincar polarizability from a kinetic equation for the
sne-particle distribution function which displays a collision operator on its
v hs. We shall see, however, that the subsequenti introduction of such
Bother-order collisional corrections must, for the sake of completeness, be
wompanied by the inciusion of the Viasov expression for the quadratic
pofarizability® in a dielectric formulation of energy loss.

Recenily we were able to establish 2 nonlinear fluctuation-dissipation
shearem providing the connection between a single dynamical equilibrium
sriplet correlation of microscopic current (or charge) densities and a com-
sination of three wave-vector- and frequency-dependent quadratic polar-
wrabilities. ™ The development of this theorem therefore makes it possible to
exiend Kalman's dielectric formulation to higher than first order in the
. cupiing strength. This is the miain purpose of the present paper.

This paper 13 divided into five sections. In Section 2 the perturbation
«heme i laid out, featuring the charge of the test particle as the smallness
raraneter. For the sake of mathematical simplicity, we restrict ourselves

¢ to a conskderation of magnetic field-free plasmas. In Section 3 we use
redium clectrodynamics to develop the lincar and quadratic expressions
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for the power loss due only to the pure polarization elfects. In Section 4 all
of the correlations of the microscopic clectric ficlds, which are enumerated
i Section 2, are recast into equilibritom ensemble-averaged correlations of
microscopic current densities suitable for conversion in Section 5 to hnear
und guadratic polarizability functions. Finallv. in Section 6 the power
loss eapressions are shown, and a Viasov calculation for the quadratic
polarizability is displayed 1n order to properly leature the coupling strength ¢*
as the smallness parameter, thercby bringing our expansion scheme into line
with the customary scheme of plasma physics.

2. PERTURBATION SCHEME

In the absence of plasma and cxternally apphied magnetic helds, the
moving test particle (of mass m, and charge Ze) traces out a straight line
path at constant velocity v,. At r - 0 we introduce the test charge into a
classical magneuce field-frec plasma. Then for ¢ - 0 the total microscopic
clectric licld E(x(t), 1) of the plasma particles brings about the small micro-
scopic change 4v in the velocity of the test charge. The microscopic equation
of motion,

djdty Av(t) = (Ze'my) Eqr) (hH

shows that, to lowest order, the smallness of v corresponds to the assumed
smaliness of the test charge. Its position x{r)1s evidently given by

x(1) = x(0) -+ vt 1 dxtr) (2)

where
P

Ax(t) - | dr A

Without loss of generality, one can set x(0) 0. Next, we Taylor-expand
the microscopic field

E(x(i). 1) - E,(wot, t) + E, (vot, 1) Ax (1) + 1E, \(v,t, 1) Adx,(1) Ax, (1)  (3)
about the unperturbed orbit vyt of the test particle and set
det) = &Py v deP@y 5 (42)
Ax,(t) = AxP@) - ANFy (4b)

where the ith superscript denotes, for cxample, that the correction 4o'? is of
O[(Ze)'] in smaliness.
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The application of the expansions (3) and (4) to (1) then gives the equations
ol motion:
(didty Ay - (Zein) EAvat, t) (5a)

(ddy ety (Zeimy) . (vat, £) A1) (5b)

(didt) A1) (Zelm)E. (vot, 1) Ax2(1)

SE, Vot 1) 3,21 A (0] -+ (5¢)
with subsequent integrals
-1
AcP(y - (Zelmy) | dr Efuyt’ 1) (6a)
M}

o L e
AeP(y  (Zefmg) | di | dt” | dt” E, (vl 8) E(vt”, 1") (6b)
© 0 ] 1}
Al ot e o v
2y zetmg [ ar [ | ode [ odev [ dre
o tl

0 N 0
CE AV ) B vt T Y EvtY 1Y)

1 o NE A ot (v
| dr | a” | odi | dr"'[ drv

)
“ 0 0 JO 0 0

7 Eu..r.a(vnf/‘ tYyE (vt ") ['«'.\‘anv* t\‘): (6¢)

Next, we turn our attention to a calculation of the test charge energy loss,

AT - by - dmglyv, § 4v) - (v, b Ay

mye - Av(ty  imdv() - Av(1) "

which, from (4a), can be decomposed into the corrections
AT Mo deiV(r) V (Ra)
ar¥ay - nzl,t'(,“llv,(,m(!) ._‘.rrz,,dzvf“)(t)élvf,’)(t) (8b)

ATy - m.,rnudvis)(t) m',Avl(,')(t) A l‘,("")(t) (8¢)
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The cnsemble-averaged energy loss® is then calculated according to

N
AT~ | o | ] dxedPp, Q4T
8N i1

£ o N v
S [T s d, QAT Y ATom )
M

507 6N -0

where 2 1s the N-particle distribution function normalized to unity, 2% is
the macrocanonical distribution function of the unperturbed plasma particles,
and 2 == O[(Ze)*] is the sth correction due to the perturbing influence of
the test charge. Thus [see, e.g., Eq. (18) below]

AT /\AT“"»“” : AT 0 . ,\"A']‘(a)\(o) R

P VAN L I A PR R R I AT

/d ']‘/,(2) _A'r(n 2)
to third oder of smallness. Clearly g7 My, - Aytser o)
since, for the cquilibrium system, all possible directions of the total micro-
scopic electric field arc cqually probable. We now redistribute the average
energy loss into groups of like order in the driving test charge (Ze), namely

\A']“ (1) U(?"(I) ({[3)(,) A4 (]0)
where
U(‘.’)(,) ‘(AT(”>(I) . ‘/JT(?') (o)

(M ye 2
gy Ar Py M e 40P @

Sy AtV {Ha)

U(S)(I) /A I-(l)/ (I :;A'I""’) (0 St e
mgto. Ay @ g, 3Py
g ey Aoty Yy deV(e) 461y,
/;101',,“@;’11““3)(/) o (11b)

¢ We shall sce that the avetage coergy toss of the test particle is proportional to its residence
time ¢ in the plasma. In order that the orbit of the test chiarge be only <lightly disturbed,
its residence time must be short compared with its relaxation time. On the other hand,
the notion of ensemble averaging according to (9) is mecaningful only if 7 1s sufficiently
long to include many fluctuations of the plasma particles. It is physically reasonable to
assume that 7, ycruarion -:< 7ryLaxaTion » and if the test charge interacts weakly with the
cquilibrium system, then 7reraxarion — 7. Thus in the sequel we take 7 to be large,
1.¢, 17 > O,
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The velocity correction in (1la) and (11b) can now be clininated i faver

of the microscopic ficld quantitics by use of (6a): (6¢). We obtain

Uy U USSR | UR ) (12
U0) - Uphi(0) t 2, Urotstalf) - )3 Ut ity
sl s 3
where
ot
Upsl) = Zevg, | dr (Evr 7™ w2 1,2 (13a)
0
2 -t - .
Ui - - (f]” tou | dr | dr' | e CE, (v, T) Evor', 7)Y
0 0 0 0 (13h)
at .t
Ugdin - (-7{5)—-] dr | dr' <E v, 7) Evgr', 7)) (13¢)
Mg Yy “ 0
/)2 -t T ,i’
U;%IL)STAT(I) - (—/—(—) I'n“J dr ’ dr’ ' dr" (E, (vor, T) E (%", 7)) w
Mg o -0 <o
(13d)
(3.2 Ze) ! o A
U:’%’)‘I’.).STAT(,) £j—(_)_ J dT ’ (/T '<f-‘("07v T) Eu(VOT » T ) w (13‘:)
My Vg Yo
v L
U82t) - i f s J., dr' | dr Jo dr
v LE VT, T) By (Vo7 7) Evgr”, 70 (130)
(3 4 _(_Z_‘.’_.):)_ \ lll {’ oy =7 R T v
Ustar(t) - o l”“J(,dT JO(IT JO ds -‘o dr Ju dr
a CEy VT, T) EL (v, T7) Ex(vgr!Y, 71V)H O (13g)
(J 5) . (Z(’) ! . i ‘ ’d, . ! L e v
Ustar(t) - Tyt o, Jod7 JU(IT Jo dr J,od'r Jo dr
s B, (T, 7) Efv 7" 77) Ey(vyrtY, 71Y),0 (13h)

The cnergy loss expression (12a) has already been cast into a completely lincar
dielectric form by Kalman for nonrelativistic magnetic field-free plasma sys-
tems® and by Golden and Kalman for relativistic plasma without externally
applied magnetic fields."® The first r.h.s. tcrm of (12a) arises from polarization
effects [note in (13a) the perturbaticn in the field particle distribution function
brought about by the polarizing presence of the test charge]. A glance at
(13b) and (13c) shows that the lust two terms ol (12a) arise from statistical
effects; here one can usc the equilibrium fluctuation-dissipation thcorem to
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climinate the inconvenient correlations of the nucroscopic electric fields in
tavor of the linear diclectric function. These caleulations of Kalman will bhe
briefly reviewed in the present paper. In the expression (12b), the first r.h.s.
term represents a higher-order correction to the polarization loss, while
terms (131)-(13h) are purcly statistical conlributions since they are simply
triplet correlations averaged over the unperturbed distribution function off
the plasma particles. We note, however, that (13d) and (13e) are doublet
correlations averaged over the pertuibed distribution of the ficld particles
{again brought about by the polarizing infilucnce of the moving test charge):
these latter contributions therefore portray the mixed statistical-polarization
etfects to lowest order in (Ze).

Now the contributions (13d) and (13¢) can be expressed in terms of
cquilibrium triplet corrclations sinufar to (13€)-(13h) by first observing that

Q)= - ]" dr fexpt-- il e 1Y - 2y Q1 (14

15 a formal solution of the perturbed Liouwitle equation
(EQQWier) QLN L g
where
L AHS ) s -0 (15)

are Poisson bracket operators, /7™ being the Hanultonian of the unperturbed
plasma including interaction. and

HYY - Y by (t)pye (16)
[
the Hamiltonian portraying the inieraction between the external scalar
potential of the moving test charpe,

é o (1) = (Zeieyp™) explip” - vy!) (i7)

and the microscopic charge density py- . Upon combining (14)-(17), we can
ultimately show that

B

QY - S (Ze) vy ,I;,,’___- | dr jap .t TU)explip” c volt - )]
ol o

(18)
where

70 = | drexpt i) e o) (19)
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is the p“th Fouricr component of the microscopic current density? and
B-1 = kT is the temperature in energy units. Equations (13d), (13¢), and (18)
therefore combine to yield the equilibrium triplet expressions:

; (Z(’)“ . p” ot ~7 , ot . e
U(S.]] . (1) - {.ﬂ S— “ —-”y_; {/7‘ (IT (17' dTm
POL.STAT My€ol? 0 pz‘/’ ¢ ' o ’ o J(, J(,
< {explip” = volt 71
CE, VT, T) Ev,1", T”)A/',v(p”* L~ T”)\/\(O) (20a)
iB(Ze)

3.2 -t T o .
U coatl) }_-;—,’2 ’ dr | dr . d7” explip” * vo{t ~ 77)]
L R

B TN A}
2mge Lt

v [Z‘.,(VOT, ) [_‘:“(V(,T’. T')jy(p", ! 7”),\ (0} (ZOb)

The doublet and triplet corrclations in (13b), (13¢), (131-g)—(13h). (26).
and (20b) comprise the set ol cquilibrium correlation tensors which will be
treated in Section 4 for their conversion in Scction 5 to linear and quadratic
polarizability functions vis-a-vis appropriate fluctuation-dissipation theo-
rems. We wish, however, firsi to cast the pure polarization energy loss con-
tribution (13a) into dielectric form. T his is taken up in the next section.

3. POLARIZATION CONTRIBUTIONG
Starting from Poisson’s cquation,
ip - Dip. 1) (2mleic,) Sp v, — @) (21)

for the electric induction response D(p, ) to the moving external charge.
we present here a straightforward mediunm electrodynamic derivation of the
dielectric formulation of t}mc pure polarization energy loss contributtons (13a)
written in Fourier representation as

- e {

Usol0) - (Ze2mlieg, Y | dp o Eapopy f dr expli(p * vo — p)7)
p ° "

, (22)

¥ i.2

3 Throughout the remainder of 1his paper we adopt the spatial Fourier transform conven
ton (19). The temporal transform s given by

ar

ip . uy - ‘ dr dr explitpt - p" r)jir, 1)

A

with inverse transform convention

e, 1) - (113 X l (du” 2=) expli(p” «r -~ p"0)}i(p", 1)
pr
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Now. the connection between D(p, 1) and the average electric ficld corrections
<E(p. p-** is given for a homogencous and stationary plasma by the con-
stitutive relation®

D(p. p) = €(p, )+ Y. <E(p. )"

s=1,2

& Z‘aZJ 2: (p. " 1y 1) s VE(D L ) EQ, )Y
[

PPEp ok oo @9

so that elimination of D(p, u) between (21) and (23) yields, to O(Ze) and
O[(7Ze)?], respectively,*
ip 2TLC OB " Yo = p)

CE(p, p) - Y e (242)

and

CE(p, p® = — '2;: 75 P %: bi'P, 'EO(%)E?{F};)—&
X CEAp' ). VL, (24b)
where

elp, ) Ppuedp. ) (25a)

and
P\ P 1 ") Pald Plenn (PR 1 ) (25b)

are the longitudinal projections of the linear and quadratic dielectric tensors
¢4 and €., , and where we exploited the scalar character of the average field,
namely

CE(p, pd' = - ipllp k. s 1.2 (26)

* We note that the external charge density s itself modified by the presence of the plasma
particles so that
pert(x, 1) Ze o(xX - 1,1 dx )

Since {d4x> is, at most, of order (Z¢)?, the averuge modification in the external charge
density and, consequently, the corresponuing average clectric field reaction to this
modification arc of order (Z¢)®. Now (24b) shows that < E(p, ), ' ~ O[(Ze)eg] and in
the Vlasov approximation, e, ~ O[(Brer:e )¢} ~ O(e) (see p. 86), so that (E(p, p) ¥ ~
O[(Ze)*e]. Since e and (Ze) are on the saume smallness footing, a proper formulation of
(24b) should take account of the modification in the external charge density. This has the
effect of adding to (29b) terms of order (Ze)* containing factors like 1;(ez(p’, P’ - ¥o)
«(p”, 7 - o).
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since the plasma is assumed to be maguetic field-frec. Cquations {24a) and
(24b) then combine (o give for the sccond-order average clectric field cor-
rection

. W 27(/()‘ - S PSP P Ve R Y
CE(p, 1) Loz PN WY gt 27
where
7p.p" o p) S £ 'u, Ty (28)

U(Py ,l/«) lp.p B €(p. LN)

Thus upon mserung (2 4‘ i) and (27) back into (22) and taking account of the
odd parity of Re n(p". p".p" - v,, p" - v,) under simultaneous sign reveraal of
its two wave vector ar,a;umcnls."’ one obtains the following desired dielectric
formulations of the encrgy loss corrections:

_1{Ze)? v', i ;
U (1j = x. . 29a
P()I _01 3 }D.. (’“" p AN ( )
and
G tiLep : " .
Uit el \ ['p o ' Ren(p', p", P Vo, P " V) (291)
(p’ + p" - p). The corresponding pover luss correction P n - 2, 3, are

then obtained from (29a) and (29b) and the definition (see footnote 2)
pim {lfxll JG iy (303

The expression (29a) is the well-known resudt for the linear contribution
i0 the polarization energy toss of a test purticiz. This result is corroborated
by modcl-independent mecdium electrodynamics which predicts that dis-
sipation in a lossy plasma is portrayed by the anti-Hermitian part of the

* Equations (25a), (25b), and (28). togcther with the reality of e,gr - ¢, ¢ 1) and
e Ar — 1 17t -1t --t7), suggest that

. . . . ol -p. - p'; wo—ah)
7(—=p, P, -4 —p") s R A i T
T T P TR P O SN

—ﬂrl’[i/’) -Hy(p I) "' V’)

-f’ul’,, €& (B 10B, fi D' W) Wy By el 1)

N Q@' 7’ ) * o' B

DAL R (N TI T

( fL(D M)f/(l’ Il “L(ll u ) L

or Re (p’, p";p',n") =~ —Re n(-p, - p"; —¢', ") and im o(p’, p"i u', p7)
Im 9(—p", —p" -4/, —&").
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diciectric tensor. "' furnmyg now to (29h), it appears that only Re vy contri-
butes to the quadratic polarization correctioir. Laler on we shall see, however,
that the statisucal encrgy loss contribution nvolves both the real and
imaginary parts. There are no known energy loss calculations nade from
nonlincar medium electrodynamics which can support these iindings. Their
conscquences with respect to lossless plasmas will be discussed in Section 6.
We consider next the statistical energy loss contribution.

4. STATISTICAL CONTRIBUTION

In order to replace uitimately the egrdibeium microscopic correlations
in (13b), (13c), (13F) -(13h), (20a), (20b) by thew dieleciric fonction relatives
supplied by appropriate fluctuation-dissipation theorems, i is necessary first
to formulate thesc corrclations purely in terms of nucroscopic current
densities. This 1s the task of the present section and is, of course, facilitated
by converting space time correlations to correlutions of wave vector amd
frequency components. Thus conversion to Fourier components via the
inverse transform convention of foctnote 3 and use of Poisson’s equation
for the microscopic electric ficld, ¢.g.,

E(p. o) = (jpe) pp-jipo s, p == plp (30

leads to the foilowing expressions tor (13b), (13c}, (13F)-(13h), (20a), and
(20b):

(/¢)? . ff die s dpd
/(ﬂ.m) . _‘/Sz__ R _‘ fL (/_ Z7 Pp £y (0)
U m(t) o e Tmﬁy [ | D JaPy 1) el —py 1))
Ky s t), o= 1,2 (32a:
gy o 2P (B e T e (T odp
U (t) - mog(anneo)a ,3_‘,- !7, o pll pv ’ o K J‘_“n _./"'V’ J’._’n d}"’

X g 1) e Y g 1 (P B P e i, 1 1)
(32b)

(n=1, 2,...,5), where
1
Loa(popit) - ipov, f drexplitp * vo — p)7)
9

‘.r dr’ [
<0

i

H

d=" expl—i(p - ¥y -~ p)7"] (33a)
)

t 14
Lol pi0) = 4 [ dr [ dn" explitp - vo — p)(r — 0] (33b)
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Loa(p ', 07 po 'y W75 0) = —Bmo(@ Vo) | e expli(p” vy — pNE — 7]
bl 1]
t
X JI' dr expli(p * v, - p)7l

< [ [ drexplip v, @ (330

S0 Al

Lo, 0, 07 o s 175 1) = hiBmy | da” oxplitp” < vy Nt - 1)

Y0

t

* { drexplifp = v, - p)r]

Yo

X ‘ dr’ expli(p’ - v, - p)r) {33d)
b )

Lop,p, 0", pop's 0" 0 = (p' - p/p") i )(Ir expli(p * ¥o — p)7]
vl

af
x f dr’ expli(p’ ~ vy -~ n')7’]
(]

e [ gl v ] (330

1
Lo a0 P75 o 'y 72 1) o [P V)P = 7)1 .; dr expli(p * vo - - 7]
X J; dr” ,T drtYexpli(p” vy - pTV] (336)

L3P, P P e /s " 0) = Li(p - vo)(p - p7)/ 2] l- dr expli(p * vy — p)7|
L]

‘ dr’ ;' dr” expli(p’ v, - )"
c 0 R

rr
l Sl de Y expli(” e vy - TV (23p)
Ve Y

In the long-time (7--» oo} lunit, one can show that the 7 integrals
(33a)~(33c), (33f), and (33g) become
lim I, (p. gz 0y 2urt(f -v(,)(p'---,é—) S,(p-vo— p) (34
t | Yy
i Ly o(p, o 0) = 7t D v o ) (3ab)
lim Iy (p', p". g, 175 1) = — 2mBugt(p * v,) -;-(-:---
- GLN

X h--.

[P’ S Yo p7) (34c)
lp,f’r’/‘)s! ! rak p”) p' TV p'l ’
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@m)* it(p* Vo) (P' 7).
wpp”
«? 1 ul(p) .&l Tbm( l' )pm

gty LB BT, (B BBLT, (P

Hm [y (0, 07, p's 175 0) =

Ky - ) B(p Yy - ,/)] (34d)

. T ) ( m)“ll(p _Vo)‘i’ p ) (_2 B
hn I o0, 7 s 15 0) 2up'p” g Clgy
- ll "(_.,p ) ’)'l rhm_(p )pm
P ﬁ 1 ([’ )ptpuTtu(P)

SR v )BT v )| (Bde)

where, c.g., Th{p") 5,  pips, is the iransverse projection teasor with
respect to the unit wave vector p”, and

duip " vy jt) B -v, - ) - W2m) PUp vy - )

P denoung the Cauchy principal part. tn the 1> w0 limit, the integral of
(33d) and that of 1, , which contributes to U%* can be shown to be time-
independent. Consequently '3 and {7 unlike the other energy loss
contributions. remain bounded as ¢ tends to infimity and are therefore
neglected in the sequel.

4.1. Doublet Correlations

Let us consider first the statisticai contributions (32a) to the test charge
cnergy loss arising from the equilibrium doublet current correlations.
Equation (32) with m = | and Eq. (34a) combine to give

. 2ni(Ze)? <
lim USRr(t) - ;;;é;;n"l‘g)z 2, {(p* vo) (P - ’—) Pabs

[}

Xf -Ei-’--L-J. d’, XCADY AR WS YA N( REARAA

e (3%)

We observe here that < j(p, 1) jo( - p, p) " is cven and real; its sign remains
unchanged under separate wave vectos and [reguency reversals, since the
cquilibrium system is reflection-invariant and the sign of the equilibrium
current-current correlations is unchar:ged under microscopic time reversal.

Thus the operator
(P Vo) Pa Py, _ © g __a__
o, p, ) = " kP ) Jol =, ') o (36)

0
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has nct even parity with respect to simultaneous reversal of p, u, and u'.
Clearly, then. the product of f(p, p. ) and the principal value part of
3,(p - vo — ) has net odd parity in the sense just described, so that this
product contributes nothing under the simultaneous summation and
integration operations of (35). Only the product of f and the &-function part
can contribute, so that (35) simplifies to

; 2,00 wt(Ze)? _4' ~ [) p,,
lim Ustar(t) = TG 2‘ (P~ Vo) (p ) DoV
) dp’ Cgp, P« Vo) Jo(--p. i 1) (37)

Concerning U&:3h , Eq. (32a) w1th m -: 2 and Eq. (34b) combine to readily
yield
—mi(Ze)? P ba .‘"‘

. (2,2 L _ _PalPs "o . .y v {0)
lim Ustax(?) - mo(2megl3)? 4 )} (p ' Vo) ‘/# AT RRAY 2 Cal BTSN
(38)

Then upon adding (37) and (38), one recovers Kalman’s linear results for
the statistical coatributions to the energy foss.

4.2. Triplet Correlations

We turn next to the reduction ot the triplet coninibutions (32b) to
simplified forms similar to (37) and (3&). Coasider first the mixed polarization-
statistical energy loss term, (32b) with 5 = 1. Upon combining this with

{34c) and letting p"—p, p' —p". " -~ p". p > u’ for future notational
convenience, we obtain

; {3.1)
I"f}} UpéL.star(?)

2mtf(Ze) « 1+ ) " PHP P " Vol(p - ¥o) PP -+ P Py

T M2l 5 (pP Y ip +p i
.Y T R U Y
BT B BT 7 e Lpove d o ) T
; i
X alPo P Yo jo(—P — P75 1) (P #)/“)P—p———----'-—l—.-—] (39)

To see why Lj(p’ - v, — w') in (34c) was interpreted as being a Cauchy
principal part, we note first that the product

[(p * P) Pubr'B2IpP'P" i KRy 1) JulP's 1) 5,07, k' D®  (40a)

appearing in (32b) with # == 1 undergoes a change in sign under simultaneous
sign reversal of the wave vector and frequency variables. Consequently, only
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the product of (40a) with the corresponding odd paniy part of /,, can
contribute to (32b) with n - 1. Now lct us a<sume that the interpretation of
1/(p" « v, — p') is entirely arbitrary and suppose therefore that a vanishingly
small quantity i€ can be added to or subtracted from p’- v, - w'. Then

] ey "o !

Iln“l p --“—'_"_ -I_J_—If i 5([) Wy Vo M ) - Pp, v, ,“', (40[’))
and upon combining (34c) and (40b), it 15 clear thai the casung d-function
part has net even parity with respect to the sign reversal of (p'. p°, ', u"),
whereas the cnsuing principal part contribution has odd parity. Thus only
this latter can contribute to the energy loss expression (32b) with n 1.

It now remains to evaluate the pure statistical contributions, (32b) with
n = 4,5 In the case of U . the combination of (32b) with n - 4 and
(34d) can be shown to yield in the limit ¢+ o
mi{ZeD > Qe e vallip i 97) pllte | p7) o]
nlo‘"(27reol ’)‘ tpp™¥p iop" it
ut(P)pl [llm([' )/’1 .

« :. N ”)' M _‘.__._...__.
PP PPy P (5 )/’f’,,r.u(f’)

- 3,49
]"[‘} Ustar(t) -

L T A R

o O LDV S 1
o . . o (0) ! —
PP Yo)js( P BT A, w)YY P p ey, - #'}
(@1)

Similarly, for UL . the combination of (32by with n =~ § and (34¢),
accompanied by the summation-integration variable transformations

I I N N G S T T

ultimately results in the expression

s T Ze)? e = p) - volltp 1+ p7) - plip + D) P7]
hm Ustanlt) = o e 97 Z (pp"¥ip+p 2
] T (p)pll,'l‘hm‘f).)f’m
< PP i P s by l;’ P PVEBT, (P

, _dl_‘_ J"" dp’ "’ dp”
g, Olgy L PV » B I

X s P * Vadjn—p — 7 1 )ip"s Py
(42)
which is strikingly similar to (41).
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To summarize this section, we add (37) and (38) to obtain the following
statistical contribution to the powzr loss [see Eq. (30)] due to the doublet
current density correlations:

o . —m(Ze)* ) 0_, PuPa
Pstar = 3 ‘mo(2me L Z( ) (p v

P

< duCaw ot e )

(43)
and we add (39). (41), and (42) to obtlain the tollowing mixed and pure
statistical contributions due to the triplet current correlations:

po L dille) o I‘_v BAN BTN NN Y.
POL -STAT-STAT 'n (271'601“)1 (p/pu)s|p | p |2
.o ut‘p)}) rhm(p )/’m _ [ ', ] S a" . ,(‘__
f> . T”(p Y :u(/”) ;.B'”o(l’ voltp' - ") Yol s .
A o LI Y /A
[(p p) P](D * V), ’na”lmel J' o J . Pf
! L .
St R O X ( I RE A SR ATV ( AT “’”
P Yy — p
(44)

We have thus arrived at the point where the microscopic current density
fluctuation spectra in {43} and (44) arc to be replaced by appropriaie polar-
1zability functions via fluctuation-dissipation theorems. This is taken up in
the next section and our calculations should ultimately lead to energy loss
expressions similar to the pure polarization results (29a) and (29b).

5. FLUCTUATION-DISSIFPATION THEOREMS AND
DIELECTRIC FORMULATION OF THE FORM FACTORS

It is notationaly convenient to introduce here the scalar ““form factors”

%) - 20L20%(p. p - vy) (45)
_ o dp i !
S(s) I, ¥ T ""H:;- @ ', ”; I.v > '”, ’ n_P ‘ ST W
@07 - ] QUL Ve i) e P
(46)
where

27L°0%(p, p - Vo) 8P * a + 1) = PubrCiialD P 7 Vo) js(—p, pD©  (47)

0¥ (p, p"sp Vo . ") (i b P Vol p”)
ptx (P P”)s[)y

————— A Vo) D — P 1) D% ) (48
P ~plp AP0 Vo) i - — 97, ), 1)) )
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and it is clear that (45) and (46) written also as
O, p) - LB P _.)L_/L Todp e dp o, L
S9p,p) = f /L'-‘-,- P T
G Y B P )R, N (49)
are the central terms of (43) and (44). In thls section we shall recast (45) and
(46) into dielectric [orm.

The starting points for our analysis are the following linear and quadratic
fluctuation-dissipation theorcems of plasma physicst??:

Q(p, p) == (2/B) Re 6(p. 1) (50a)

and

B, p"s W, ") == — (BwL3B®) Re[do(p', p”; ¢, 17) (50b)
— Go(p', —P; —p's 1)~ Go(—p, P75 gy — )]

(p:=p -+ p.pm = p i u") where 6, and 5, are the so-cailed linear and
quadratic external conductivities which connect the average first- and second-
order induced current density responses, respectively, to the external driving
ficld E [of the moving test charge see Eq. (17)] and the product EE, namely

(1)

Julps 1)) 6,.(p, 1) EAp, p) (5la)

.. « l ’ - . ’ " ' ” ~ ’ ’ i~ ” ”
Culpy ) = (1/19) ‘;f ‘3’; G P75 1 1) ELP, 1) EXP. 1)
D -0

(51b)
(p=p -+p,p=p +pu)wih
&L(p’ F’) = f’uﬁv&uv(p‘ bu) (523)
and
(P, P"s s ) = Pub) DB DT i, 1) (52b)

Recent medium electrodynamic studies®?% shiow that these external con-
ductivities are related to the dielectric function (25a) and (25b) as follows:

L(p, #‘)

(P, 1) (532)

G(p, p) — —iegu —

and
Go@, P 1, ") = —ieun(p’, P ' "), p=p +pu” (53b)

822/7/1-6
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where o (p, ) = e(p, ) — | 1s the hincar polarizabiiity of the plasma
medium and 7 is defined earlier through (28). Equations (50a) and (50b)
permit us to write (46) and (47) as

S(‘z)(p) — (471‘3/3) Re G/(p.p- Yo) (54)

S p7) =

RL B A e
B2 L L wp e i) P e e
X Re[6o(p’. p":p ~ v, ")
SR IS SRR JHES AN TS AN
=Gl p PP T AP Y, )] (55)

Now let us examinc more closely the naturc of the denominator term,
YIp"(p' » vy + ")), appearing 1n (55). This term might be interpreted to
be any one of the four products,

[~ 2mi o ()-8 8,09 = vo 1 ") (562)
U2 8 (W )2mi S (9 vy 5 ] (56b)
27 d (u[ =27 8,(p" = vy + 1) (56¢)
2 0 (2w 6. Ap e v, 1 u) (56d)

Consider, e.g., (56c), which expands to

w2 (") (P vy o mid(p v, -+ u") 1 8(u")]
| !
NP e e PP e e e 57
P Y I (i) ‘Yo M ) ( )
- Associated with the first double delta function member of (57) is, from (55),
the combination of dc conductivities

Re[6,(p, p":0.0) o', - p p 0,00 - Go(--p" -~ p". p"; 0, V)]

cach of which is identically zero in virtue of (53b) and the boundedncess of
the corresponding de terms in Im %.° Thus the tirst member of (57) contnibutes
pothing to S in (55). We might observe {rom the odd parity of Re 6,

¢ From our recent nonlinear fluctuation-dissipation theorem study'® we were able to show
that
Imn(p, p7; 0, 0) = (- B2 2eL'pp'p”) {p(@Ip{~ P ip( - 9", p - p' +p”
where, physically, one cxpects that the r.h.s. cquai-time tiiplet correlation of microscopic
charge densities is bounded.
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with respect to simultaneous sign reversal of its wave vector and frequency
arguments’ that the second and third nuxed delta function-principal part
members of (57) also coniribute nothing to the power loss expression (44)
due to the fact that these two members, each in multiplication with the other
wave-vector- and frequency-dependent factors comprising (44). give rise io a
net oddness parity. Thus, only the fourth pure double principal part member
of (57) can contribute and, fortunately, this term always carries the same
sign independent of the four possible choices given in (56). Thus a partial
fraction expansion of the resulting triple principal part friction in (55)
accompanied by applications of Kramers -Kronig formulas like
X

T A ay P )
Imaopp.p'spn, n') - - F J_ ’ -i-L--”——'_—x— Reap',p": p'. x) (58)

and subsequent conversior from & to 4 via (53b) ultimately yields for the
triplet form factor

@0 oy L Steld e L D
S¥(p’,p") - 2 -y Re 7(p’, p"; 9" * V0. V)
1 S o "
v _I;-"—‘ -\". Ren(p'sp™s p = Vo . P" * Vo)

!
-('[;'__; o) v

{

Reylp's - pp "va, (P 0 P Y)

Reqtp’s -p" o p7p v, 0)

e,
. 7o PRI
= Loppp | /A S S
™ D @ v pw D vy )
X Imy(—p —pp" " 1 P Vo —u”)] (59)

6. DIELECTRIC FORMULATION OF THE STATISTICAL
POWER LOSS AND THE PLASMA EXPANSION PARAMETER

Kalman’s linear contribution to the statistical power loss,"®

(2) (Ze)F (l I Povy | _‘ ) __l___l f (60)

Porat = e, 8 &\ T P T ) e e v

is readily obtained from the combination of (43), (45), (47), (53a), and (54).
Unlike the polarization power loss (29a), this statistical contribution is, of
course, proportional to the plasma temperature 8. Equation (60) also

7 The parity rules for &4 are the same as those for 7 in footnote 5.
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shows that more massive test particies are less aftected by other statistical
fluctuations of the equilibrium plasma.

Concerning the corresponding hihger-order contribution and, in
particular, the triplet form factor, we observe that the wave vector trans-
formations

[ O I
put $® into a form which 1s manijestly antisymmetric under interchange of
q’ and q", 1.e.,
Z2(¢,q")  SP@Q 4.9q) -89 -q",¢) - -Z(Q,q) (6])

This parity rule permits us to write the power loss equation (44) in the mani-
festly (prime, double prime interchange) symmetric form:

P L. )3 ¢ - 44" - 9)ul9s'Gn - 969, )
CLTSTATSIAT (Bmyell¥P e 1 — €GP - @ ¢

ar

» B Al aw ’ AN a
X ;ﬁ"’l)quUOv[q T(G') - 4" — q TG §¢1-—
Iy

O C DM P 9 1 W

L q q | bor Vs 6v,,,‘

8) r oo
0% _.__6 (q_:_q_).__.
Q" --q) v

(62)

where
R, q") . (--P*8n%,L") Z(q, Q")

From (59) and (61) we see that R%(q’, q") 1s cvidently an “effective™ quadratic
polarizability-like response function. Again remark that the term in (62)
which carries the second velocity derivative i« the pure statistical contribution.
This term is seen (0 be proportional to the square of the temperature, con-
sistent with the fact that it is a quadratic correction to the linear statistical
power loss. On the other hand, the term which carrics the first velocity
derivative is the mixed polarization-statistical ctTect and therefore featuresonly
the first power of the tcmperature. Equation (62) is the desired dielectric
formulation which extends Kalman's resull ((*}).

Equations (29a) and (60) show that dissipation is portrayed by Im e, .
This well-known result has been deduced from purely medium electrodynamic
considerations.!'V) Concerning the quadratic contribution to power absorp-
tion, we observe from (29b) and (62) that for a zcro-temperature and,
consequently, nondissipative plasma, v must be purely imaginary. This result
has been corroborated in a recent nonhuear conductivity calculation based
on a cold plasma hydrodynamic model."* However, it would be preferable
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to venfy from a model-infepeadent mediun electrodynamic  energy
absorption calculation that » is indeed purciy iraginary for a nondissipative
plasma.

Uinlike a lincar medivm, wihere absorption is reftected entirely by T ¢, |
the quadratic plasma swdimim teatures both the real and imaginary paiis
of % [see Eq. (39)]. Assuredly the real part seems to be more prominent and
this seems all the more true, since tire appearance of Im » under an integral,
eg.,

-1
P ’ (i Yty p 0 p'op™spd 0 p v, 1)
arises only because the variable of mtegration (in this case, ;") appears in
cach of the two frequency arguments, so that Kramers-Kronig formulas
cannot be used to any advantage here.

The derivation of the pnrely dielectric description (62) for the quadraic
correction to test particle power ioss has been the central thrust of this paper.
In principle, it 1s then a straightfoyward matter to compute the dielectric
functions m (62) from the appropriate plasma kinetic equation to obtain
explicit values for the various contributions tpolarization, statistical, and
mixed) to this power Joss correction as a lundtion of the ratio of the test
charge velocity to the therimal veloaity of the equilibrium plasma. For the
lincar contribufion Kalman®™ has already evaluated (60) to zeroth order in
the coupling purameter (rafio of poteniial cnergy (o khinetic enerpy),
O Betdsmegr. using the Filawov expression for the linear polarizability
therein. Sinmilar computations applied to (62) are much more complicaled
and in any case fali owside «f the scope of the present paper.

We close this study with @ proper stanfication of the ordering of the
smialiness parameters o and - fiuetiie, when the quadratic corrections are
taken mto account. We vemind the reader that the density iris 1o be regamied
as being a paramcrer invepedent of the ceupling strengih o) thus n may be
large even in the weak coupling linui, so thac the smaliness of the plasma
paramcter.

Xdanl P 3t
can be muamtained by ke o - 20 for - -t The smallness of 8 is. i turn,
assured by excluding ucivans - ch arise fromn strong binary collisions,

e, excluding interactiva disianiees rowvhich are smaller than the impact
parameter. Thus our perturbation scheme s vabid if, and oniy if,

Betpydme, - ]

To determine tire ordering of y and & n (62), ict us consider, for example,
the nonresonuant (e, =~ i) contribution. To {owest order in the charge
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smallness (i.e., in the Vlasov approximation), one has from the Kalman-
Pomcau study“® that

Coyme o e mfincte
Ren(k’, k" o, w") = e ek k"
. 3 _ . ! _C_ ,,_.__.'.f.(.:—. — k" . ‘ ___I____
deVS(w kv) (Ko P K w,__k,v)
¢ 1
3y P .
J dv P w—k-*v
< [kl N _i)_jo 8(&)” _ k . V) n k;, . I fo 8((1)’ _ kr . V)]' (63)
oy ' ov ' ‘

where k = k' =- k” and f° is thc Maxwellian distribution normalized to
unity. Thus to lowest order, Re 7 ~ ye, so that

PBasor ~ (%)(ye) -~ O(y8Y)

For the linear power loss expression one finds in the Vlasov approximation
that

P{":l)asov ’ O('y&)

Clearly, then, if the quadratic correction P is to be included in the total
power loss P, then P can be correct to O(yd?) only if P includes collisional
corrections which are of order 9, i.e.,

P{’Z‘)MOV1COIH:“0HS - 0(“/5)(] - 8)

Thus the linear polarizability of (59) should be evaluated from a plasma
kinetic equation for the one-particle distribution function which displays a
collision operator on its right-hand side.
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